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To the Editor:

Consider a three-compartment model with all pos-
sible arrows between compartments and an “out”
arrow from each compartment. Let k;;, in inverse
time units, represent a transfer rate constant from
compartment ¢ to compartment j, and let k;o repre-
sent the out transfer from compartment : to the out-
side. Now if x; is the amount of substance in com-
partment i, the law of mass action and the hypothesis
of simple diffusion lead to the set of differential
equations, written in matrix form, where x = dx/dt:

X, —k, ky ks, X
J.52 = ki —k kyp )| x, (Eq. D
3.53 kyy by —ky X

Here, k1 = k1o + k12 + ki3, ko = ko1 + koo + ko3,
and k3 = kay + k3o + kao.

Let the initial conditions be x1¢, x99, and x30. Also
let the 3 by 3 array of k values of Eq. 1 be represent-
ed by capital K, and let bold face denote a vector.
Then Eq. 1 can be written as:

x = Kx

(Eq. 2)

with initial condition vector x.

The structure of the matrix K is evident. There are
minus signs on the diagonal elements. The ith diago-
nal element is the negative sum of all the out arrows
from compartment i or, in other words, the negative
sum of all & values in column i and the out k from
compartment i. Aside from the diagonal elements,
the pattern of subscripts in the matrix K is evident.
For example, for n compartments, we have:

_kl k‘.!l knl
[ S

K = (Eq. 3)
[ T

1n

where the diagonal elements are formed as described
previously. In the case where some arrows in a partic-
ular model are known not to exist, the corresponding
k values above are set to zero.

Now consider the use of these differential equa-
tions and the equivalent compartmental model to
simulate drug transport in pharmacokinetic studies.
Suppose that we want to simulate a multiple-dose
regimen, where each dose is specified as to the
amount of drug given and the time administered.

Niebergall et al. (1) stated that “no equation de-
veloped to date allows the drug to be administered at
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varying time intervals.” The following development
produces such an equation. We must first explain
some of the mathematical equipment used. Let (¢t —
a) denote the Dirac delta function, which can be de-
scribed as a rectangle of infinite height, infinitesimal
width, and area 1. More precisely, let:

1a<t‘5a+w

Fut — a) =<W' (Eq. 4)
0 otherwise
Then:
lim F, = &t — a) (Eq. 5)
w=0
Heaviside’s unit step function is defined as:
0,t <a
Ut — a) = {1,t > 4 (Eq. 6)

which can be described as a step of height 1 located
at t = a. Standard Laplace transform tables give:

Loty =1 (Eq. 7)

Lot — a) = exp(—as) (Eq. 8)

LUt = 1/s (Eq. 9)

LUt — a) = [exp(—as)]/s (Eq. 10)

LFit — a)U(t — a) = [exp (—as)]f(s) (Eq. 11)

Pipes (2) showed that ordinary Laplace transform
pairs have their matrix analogs. For example, if a is a
scalar:

L exp(at) = (s — a)™ (Eq. 12)
but if A is a square matrix, then:
exp(At) = (I + At + A22/2' + ..) (Eq. 13)
and:
Lexp(At) = (s — A)™! (Eq. 14}

where [ is the identity matrix with ones on the diago-
nal and zeros elsewhere. The superscript denotes ma-
trix inverse.

A simple example will aid in understanding the fol-
lowing mathematical development. Consider a one-
compartment open model representing the central or
“blood” compartment with an output rate constant
k, with one dose injected “instantaneously” at time ¢
= to and another dose similarly administered at time
t =ty.

The differential equation for this model can be
written as:

x = —kx + 0t — )
x0) = x;, =1

(Eq. 15a)
(Eq. 156)

Taking the Laplace transform of both sides, we get:

sLx — x, = —kLx + exp(—ts) (Eq. 16)
Solving for Lx, we get:
Lx = (s + k)7'xy + (s + k) lexp(—ts) (Eq 17)

Taking the inverse Laplace transform, we get:

x = exp(—kt)x, + exp[—k(t — t)JU(t — t;) (Eq. 18)
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Figure 1—Dose fraction in Compartment 1 as a function of
time.
This solution can also be written as:
x = exp[—k(¢t — U@ — 0) + exp[—ki(t — t)JUEt — ¢t)
(Eq. 19)

which suggests the use of a summation notation for
multiple injections.

Consider a three-compartment model as above
with multiple-dose amounts a; at time t; delivered
into Compartment 1. For simplicity, let { = 1 and 2,
so that the differential equations, in matrix notation,

are:
a, ot — t) + a6t — ty)
x = Kx + 0 (Eq. 20)

0

with a vector x¢ of initial conditions, where § denotes
the Dirac delta function. Taking Laplace transforms,
we get:

a, exp (—t,s) ay exp (—¢,5)
sLx — xy = KLx + 0 + 0

0 0
(Eq. 21)
Collecting terms and solving for Lx, we get:

a, exp (—t,s)
Lx = (s — Ky'x, + (sI — K)™} 0 +

0

1, €Xp (—1,5)
(s — K)? 0 (Eq. 22)
0

Taking the inverse Laplace transform, we get:

a, Ut — t,)
x = exp (Kt)x, + exp[K(t — t)] 0 +

0

a,Ut — t,)
exp[K(t — t,)] 0 (Eq. 23)

0

where U denotes the Heaviside unit step function.
When there are n compartments with m multiple
doses, we have:

a Ut — t)

m 0
x = exp(Ktx, + Zexp[K('t - t)]

=1

(Eq. 24)

The matrix exponential function, exp (Kt), can be
calculated directly from its defining expansion given

" in Eq. 13. Some timesaving shortcuts were given by

Pipes and Hovanessian (3).
As an example, let:

-10. 0. 0. L
K =] 100 -1 o x, = 0. (Eq. 25)
0. 1 0 0.

representing Scheme L.

Eompartment 1]_L‘120—>lgmpartment 2 |-f’—1-ﬁompartment 3J

Scheme 1

Leta; = .3,t1 = .4, a2 = .2, and ty = .6. Calculate
x at ¢ = 1 by substituting these values in Eq. 23 to
get:

0000 .0000 0.\ /1. 0025 .0000 0.\ /.3

x(1) = <.4087 3679 0.><0.> + <.6070 .5488 0.><.0> +
5913 6321 L/ \O 3905 4512 1./ \.0
0183 .0000 0N /2

7244 6703 0.)(.0 =

2572 3297 1/\O0

.0000 .0008 0037 0045
4087 )+ f 1821 ) + | 1449 | = | 7357 (Eq. 26)
5913 1172 0514 .7699

where a computer program is used to evaluate the
matrix exponential functions by Eq. 13.

To link the solution x = exp (Kt)xg of Eq. 2 to its
solution in terms of scalar exponentials, use known
matrix theory (see, for example, Ref. 4).

Let A be the diagonal matrix of eigenvalues Ay, Ao,
..., Ap of K, and let D be a diagonal matrix with di-
agonal elements exp (Ait), exp (Aat), ..., exp (Aut).
Hearon (5) proved that these eigenvalues are all real
and nonpositive when Eq. 2 describes a linear com-
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Figure 2—Dose fraction in Compartment 2 as a function of
time.
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Figure 83— Dose fraction in Compartment 3 as a function of
time.

partment model, even though K is nonsymmetric.
Let p; be the real eigenvector of K associated with A;,
where P = (p1, D2, - . -, Dn) and P! is the inverse of
P. Then the solution of Eq. 2 can be written:

x = PDP-x, = 2 _bp; exp (A;t)

=1

(Eq. 27)

where b = P~1x;, Thus, Eq. 24 can be written in
terms of scalar exponentials, but the notation is cum-
bersome.

To evaluate x for plotting, let G = exp (KT),
where T is a sufficiently small increment of time, say
0.1 in this example. Calculate G once and for all by
using Eq. 13 to get:

3679 .0000 0.
G = | 5966 .9048 0.

(Eq. 28)
0355 .0952 1.
or by using the eigenvalues of K:
-10. 0. 0
A= 0 -1 O (Eq. 29)
0. 0. 0.
and the eigenvectors of K:
10000 0. O
p={-1m 1 o (Eq. 30)
01111 -1 1
in Eq. 27. Thus, at time t = T, we have:
xT) = Gx, (Eq. 31)
At t = 2T, we have:
x(2T) = Gx(T) (Eq. 32)

the interpretation being that x(7T) itself is a new set
of initial conditions to use in calculating x(27'). Thus:

x(3T) = Gx(@2T) (Eq. 33)

which gives the values of x at ¢t = 0.3 in the example.
Now, similarly calculate x(47), which gives the
values of x at ¢t = 0.4 but just before the first mainte-
nance dose is given. Now let an asterisk denote the
values of x immediately after the first maintenance
dose is given. Then clearly:

x¥4T) = x(4T) + (3,0, Oy (Eq. 34)
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where the prime denotes the vector transpose. Then:
x(5T) = Gx*4T) (Eq. 35)

With this approach, it is clear that we can write easily
the equations for nonuniform multiple dosing into
each compartment, so that in general we have:

x(n + DT] = Gx*nT) (Eq. 36)

As a check, we used the Continuous System Mod-
eling Program (6) to integrate Eq. 20 numerically
with the arguments of the example. The output plots
are.shown in Figs. 1-3. Plots of the solution of Eq. 20
can also be obtained by use of an analog computer,
provided that one has a multiple-dose generator as
described by Howell (7).
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Quantitation, Elimination, and Discussion of
Decomposition Product Interference in
N-Acetyl-p-aminophenol Colorimetry

Keyphrases 0 N-Acetyl-p-aminophenol—direct colorimetric
analysis, decomposition product interference examined g Colori-
metry—analysis, N-acetyl-p-aminophenol,  degradation product
interference examined

To the Editor:

Direct colorimetric assay of N-acetyl-p-aminophe-
nol (I) has been effected by reaction of I with nitrous
acid under mild conditions to form 2-nitro-4-acetam-
idophenol. This reaction was elucidated by Le Per-
driel et al. (1), who measured the orange-red color of
the phenolate ion; Inamdar and Kaji (2), working
separately, assayed using the yellow of the unionized
phenol.

Chafetz et al. (3) compared these methods with
their modified technique employing an entirely aque-
ous system. Because these methods require only the
successive addition of reagents, Daly et al. (4) adapt-
ed the latter technique to an automated assay appa-
ratus, resulting in excellent recovery data with com-
mercial formulations.

The assay of Le Perdriel et al. (1) resulted in good



