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To the Editor: 
Consider a three-compartment model with all pos- 

sible arrows between compartments and an “out” 
arrow from each compartment. Let kij, in inverse 
time units, represent a transfer rate constant from 
compartment i to compartment j ,  and let kio repre- 
sent the out transfer from compartment i to the out- 
side. Now if x i  is the amount of substance in com- 
partment i, the law of mass action and the hypothesis 
of simple diffusion lead to the set of differential 
equations, written in matrix form, where x = dx/dt: 

Here, k l  = h10 + k12 + h13,  k2 = k2l + k2g + k23,  
and h3 = h31 + k 3 2  + k30. 

Let the initial conditions be x10, x20, and x30.  Also 
let the 3 by 3 array of k values of Eq. 1 be represent- 
ed by capital K, and let bold face denote a vector. 
Then Eq. 1 can be written as: 

x = K x  (Eq. 2) 

with initial condition vector xg. 
The structure of the matrix K is evident. There are 

minus signs on the diagonal elements. The ith diago- 
nal element is the negative sum of all the out arrows 
from compartment i or, in other words, the negative 
sum of all k values in column i and the out k from 
compartment i. Aside from the diagonal elements, 
the pattern of subscripts in the matrix K is evident. 
For example, for n compartments, we have: 

where the diagonal elements are formed as described 
previously. In the case where some arrows in a partic- 
ular model are known not to exist, the corresponding 
k values above are set to zero. 

Now consider the use of these differential equa- 
tions and the equivalent compartmental model to 
simulate drug transport in pharmacokinetic studies. 
Suppose that we want to simulate a multiple-dose 
regimen, where each dose is specified as to the 
amount of drug given and the time administered. 

Niebergall et al. (1) stated that “no equation de- 
veloped to date allows the drug to be administered a t  

varying time intervals.” The following development 
produces such an equation. We must first explain 
some of the mathematical equipment used. Let 6 ( t  - 
a )  denote the Dirac delta function, which can be de- 
scribed as a rectangle of infinite height, infinitesimal 
width, and area 1. More precisely, let: 

(0 otherwise 

Then: 
lim F ,  = &t - a )  (Es. 5) 
,, - 0  

Heaviside’s unit step function is defined as: 

(Eq. 6 )  

which can be described as a step of height 1 located 
at t = a. Standard Laplace transform tables give: 

L H t )  = 1 (Eq. 7 )  
(Eq. 8) L6( t  - a )  = exp(-as)  

L U ( t )  = l / s  (Es. 9) 
LU(t - a )  = [exp(-as)]/s (Eq. 10) 

L F ( t  - a ) U ( t  - a )  = [exp ( -as ) ] f ( s )  (Eq. 11) 

Pipes (2) showed that ordinary Laplace transform 
pairs have their matrix analogs. For example, if a is a 
scalar: 

L exp(a t )  = ( s  - a)-,  (Eq. 12) 

but if A is a square matrix, then: 

and: 
exp(At )  = (I + At + A ’ t 2 / 2 !  + ... ) (Eq. 13) 

L e x p ( A t )  = ( s l  - A)-, (Eq. 14) 

where I is the identity matrix with ones on the diago- 
nal and zeros elsewhere. The superscript denotes ma- 
trix inverse. 

A simple example will aid in understanding the fol- 
lowing mathematical development. Consider a one- 
compartment open model representing the central or 
“blood” compartment with an output rate constant 
k, with one dose injected ‘ L i n ~ t a n t a n e ~ ~ ~ l y ”  at time t 
= to and another dose similarly administered at  time 
t = t l .  

The differential equation for this model can be 
written as: 

s = - k x  + d ( t  - ti) (Eq. 1 . k )  

x(0) = XI) = 1 (Eq. 15b) 

Taking the Laplace transform of both sides, we get: 

SLX - xo = -kLx + exp(-t,s)  (Eq. 16) 

Solving for Lx, we get: 
LX = ( s  + h)-’xo + (s + h)-’exp(-t,s)  (Eq. 17) 

Taking the inverse Laplace transform, we get: 

Y = exp ( - k t ) x ,  + exp[-k(t - t , )]U(t  - t , )  (Eq. 18) 
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(Eq. 24)  

The matrix exponential function, exp (K t ) ,  can be 
calculated directly from its defining expansion given 
in Eq. 13. Some timesaving shortcuts were given by 
Pipes and Hovanessian (3). 

As an example, let: 

-10. 0. 0. 
K = ( 1; -: :I) xo = t) (Eq. 25) 

representing Scheme I. 

I Compart m w  Compartment 2 Compa rt men t 3 I 
= 10. - L  

Scheme I 

Let a1 = .3, t l  = .4, a2 = .2, and t 2  = .6. Calculate 
x at  t = 1 by substituting these values in Eq. 23 to 
get: 

x(1) = ,4087 ,3679 0. 0. .6070 .5488 0. .O + 
,5913 6321 L 0. .3905 .4512 1. 

(.7244 .6703 

O l e )  = 

(,0000 ,0000 O.)(l.) + (.0025 .oooO O.)(:) 

,0183 .oooo 0. 

,2572 3297 1. (2) + (:%) + (g) = (E)  (Eq. 26) 

where a computer program is used to evaluate the 
matrix exponential functions by Eq. 13. 

To link the solution x = exp (Kt)xo of Eq. 2 to its 
solution in terms of scalar exponentials, use known 
matrix theory (see, for example, Ref. 4). 

Let A be the diagonal matrix of eigenvalues XI, Xp, 

. . . , A,, of K, and let D be a diagonal matrix with di- 
agonal elements exp ( X l t ) ,  exp ( X z t ) ,  . . . , exp (Ant). 
Hearon (5) proved that these eigenvalues are all real 
and nonpositive when Eq. 2 describes a linear com- 
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Figure 1-Dose fraction in Compartment 1 as a function of 
time. 

This solution can also be written as: 
x = exp[--k(t - O)]U(t - 0) + exp[-h(t - t , )]U(t  - t , )  

(Eq. 19) 

which suggests the use of a summation notation for 
multiple injections. 

Consider a three-compartment model as above 
with multiple-dose amounts ai at  time t i  delivered 
into Compartment 1. For simplicity, let i = 1 and 2, 
so that the differential equations, in matrix notation, 
are: 

(Eq. 20) 

with a vector xo of initial conditions, where 6 denotes 
‘the Dirac delta function. Taking Laplace transforms, 
we get: 

a, exp ( 4 , s )  

) ( 0 

s L x - & ) = m x + (  ; ) + (  : ) 

( : ) +  

( : ) +  

a ,  &t - t , )  + a,6(t - tz) 

0 x = K x +  

a,  exp ( - tA  

(Eq. 21) 

Collecting terms and solving for Lx, we get: 

a, exp ( 4 , s )  

Lx = ( s l  - K)- ’x ,  + (sZ - K)-’ 

a2 exp (-t@) 
( s l  - K ) - (  ; ) (Eq. 22) 

Taking the inverse Laplace transform, we get: 

a,U(t - t,) 
x = exp(Kt)x, + exp[K(t - t , )]  

a,U(t - t2 )  
exp[K(t - t2)](  ) (h. ‘23) 

where U denotes the Heaviside unit step function. 
When there are n compartments with m multiple 
doses, we have: 
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TIME 

Figure 2-Dose fraction in Compartment 2 as a function of 
time. 
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where the prime denotes the vector transpose. Then: 
x(5T) = Gx*(4T) (El. 35) 

With this approach, i t  is clear that we can write easily 
the equations for nonuniform multiple dosing into 
each compartment, so that in general we have: 

x[ (n  + 1)T] = Gx*(nT) (Es. 36) 
As a check, we used the Continuous System Mod- 

eling Program (6) to integrate Eq. 20 numerically 
with the arguments of the example. The output plots 
are shown in Figs. 1-3. Plots of the solution of Eq. 20 
can also be obtained by use of an analog computer, 
provided that one has a multiple-dose generator as 
described by Howell (7). 
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Figure 3-Dose fraction i n  Compartment 3 as a function of 
time. 

partment model, even though K is nonsymmetric. 
Let pi be the real eigenvector of K associated with Xi, 
where P = (PI, p2, . . . , p,) and P-’ is the inverse of 
P. Then the solution of Eq. 2 can be written: 

x = P D P - ~ x ~ ,  = x b , p ,  exp ( X , t )  (Eq. 27) 

where b = P-lxo. Thus, Eq. 24 can be written in 
terms of scalar exponentials, but the notation is cum- 
bersome. 

To evaluate x for plotting, let G = exp (KT), 
where T is a sufficiently small increment of time, say 
0.1 in this example. Calculate G once and for all by 
using Eq. 13 to get: 

,-I  

.3679 .oooO 0. 
G = ( ,5966 ,9048 0. ) (Eq.28) 

.0355 .0952 1. 

or by using the eigenvalues of K: 
-10. 0. 0. 

A = ( -:, ::) (Eq. 29) 

and the eigenvectors of K: 

p = ( -11111 Loooo ::) (Eq. 30) 
01111 -L 1. 

in Eq. 27. Thus, a t  time t = T ,  we have: 

x ( T )  = Gx,  (Eq. 31) 

At t = 2T, we have: 

x(2T) = Gx(T) (Eq. 32) 

the interpretation being that x(T) itself is a new set 
of initial conditions to use in calculating x(2T). Thus: 

x(3T)  = Gx(2T)  (El. 33) 
which gives the values of x a t  t = 0.3 in the example. 
Now, similarly calculate x(4T), which gives the 
values of x a t  t = 0.4 but just before the first mainte- 
nance dose is given. Now let an asterisk denote the 
values of x immediately after the first maintenance 
dose is given. Then clearly: 

xY4T)  = x ( 4 T )  + (3, .o, .oy (Eq. 34) 
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Quantitation, Elimination, and Discussion of 
Decomposition Product Interference in 
N-  Acetyl-p -aminophenol Colorimetry 

Keyphrases ’0 N-Acetyl-p-aminophenol-direct colorimetric 
analysis, decomposition product interference examined Colori- 
metry-analysis, N-acetyl-p -aminophenol, ’ degradation product 
interference examined 

To the Editor: 

Direct colorimetric assay of N-acetyl-p-aminophe- 
no1 (I) has been effected by reaction of I with nitrous 
acid under mild conditions to form 2-nitro-4-acetam- 
idophenol. This reaction was elucidated by Le Per- 
driel et al. (I), who measured the orange-red color of 
the phenolate ion; Inamdar and Kaji (2), working 
separately, assayed using the yellow of the unionized 
phenol. 

Chafetz et al. ( 3 )  compared these methods with 
their modified technique employing an entirely aque- 
ous system. Because these methods require only the 
successive addition of reagents, Daly et al. (4) adapt- 
ed the latter technique to an automated assay appa- 
ratus, resulting in excellent recovery data with com- 
mercial formulations. 

The assay of Le Perdriel et al. (1) resulted in good 
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